Since the 1950s, geologists have used radioactive elements as natural "clocks" for determining numerical ages of certain types of rocks. "Forms" means the moment an igneous rock solidifies from magma, a sedimentary rock layer is deposited, or a rock heated by metamorphism cools off.

radiometric dating is-11

Sedimentary rocks can be dated using radioactive carbon, but because carbon decays relatively quickly, this only works for rocks younger than about 50 thousand years.

So in order to date most older fossils, scientists look for layers of igneous rock or volcanic ash above and below the fossil.

Measuring the uranium-to-lead ratios in the oldest rocks on Earth gave scientists an estimated age of the planet of 4.6 billion years.

Segment from A Science Odyssey: "Origins."Geologists have calculated the age of Earth at 4.6 billion years.

Using this technique, called radiometric dating, scientists are able to "see" back in time.

The universe is full of naturally occurring radioactive elements.But for humans whose life span rarely reaches more than 100 years, how can we be so sure of that ancient date? Even the Greeks and Romans realized that layers of sediment in rock signified old age.But it wasn't until the late 1700s -- when Scottish geologist James Hutton, who observed sediments building up on the landscape, set out to show that rocks were time clocks -- that serious scientific interest in geological age began.A commonly used radiometric dating technique relies on the breakdown of potassium (Ar in an igneous rock can tell us the amount of time that has passed since the rock crystallized.If an igneous or other rock is metamorphosed, its radiometric clock is reset, and potassium-argon measurements can be used to tell the number of years that has passed since metamorphism.Radioactive atoms are inherently unstable; over time, radioactive "parent atoms" decay into stable "daughter atoms." When molten rock cools, forming what are called igneous rocks, radioactive atoms are trapped inside. By measuring the quantity of unstable atoms left in a rock and comparing it to the quantity of stable daughter atoms in the rock, scientists can estimate the amount of time that has passed since that rock formed.